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This paper proposes a method to identify the static, fully relaxed elastic Hooke’s matrix of a
porous open-cell material. The moduli are estimated through an inverse estimation
method, by performing a fit of a numerical model on the measured displacements on
the faces of the porous material. These displacements are obtained from a static compres-
sion along each of the three coordinate axes. The material is modelled as an orthotropic
equivalent solid, of which the principal directions are not necessarily aligned with the
orthonormal coordinate system in which the experiments are conducted. The angles of
relative orientation accounting for the misalignment are among the properties to be
estimated. The focus in this paper is on the methodology itself, and its validity is verified
by applying the method to four artificial materials with different levels of anisotropy. In
addition, the robustness of the method to perturbations on the input data is investigated.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The properties of lightweight open-cell porous materials for acoustic applications are highly dependent on the production
process. The production process itself influences the micro-structure and geometry of the material, possibly inducing anisot-
ropy in the macroscopic properties of the material. At present, the degree of anisotropy in the porous material due to the
production process is unclear, and the implications of the anisotropy are not yet fully understood.

The influence of anisotropy in porous materials on the predicted acoustic performance of multi-layered arrangements has
been studied and reported as significant by Göransson and Hörlin (2010), Hörlin and Göransson (2010) and Lind Nordgren,
Göransson, Deü, and Dazel (2013). In order to confirm the results and to assess these effects in a real foam, the degree of
anisotropy, together with the corresponding anisotropic properties of a material, needs to be determined.

Several authors have attempted the characterisation of the anisotropic properties of porous materials, often assuming
that the material exhibits a certain symmetry, and that the principal material directions are aligned with the imposed coor-
dinate axes. Jaouen, Renault, and Deverge (2008) give an overview of the available experimental methods for elastic and
damping characterisation of acoustical porous materials. The studied methods are all under quasi-static or dynamic excita-
tion of the material, and only the method described by Melon, Mariez, Ayrault, and Sahraoui (1998) allows for characterisa-
tion of transversely isotropic materials, assuming that the principal material directions are known.

In addition, most real porous materials are exhibiting an anelastic behaviour, since the predominant component of porous
materials is usually an elastomer for which the rubbery regime often spans room temperature (Gibson & Ashby, 1997). A
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method for characterisation of the elastic and anelastic properties of open-cell foams was recently proposed by Cuenca and
Göransson (2012) and applied to melamine foam by Cuenca, Van der Kelen, and Göransson (2014). The reported method uses
the augmented Hooke’s law (Dovstam, 2000), separating the stiffness matrix into a static, elastic matrix and a frequency-
dependent, anelastic matrix. This separation was motivated by Biot (1954) who introduced the concept of hidden
thermodynamic variables, and described the dynamic elastic moduli of the solid as a superposition of elastic and anelastic
contributions. The focus of the current paper is on the full characterisation of the anisotropic static elastic properties of a
porous material, which has not been attempted yet to the knowledge of the authors.

The present work is an important step towards the generalisation of the work of Cuenca and Göransson (2012) and
Cuenca et al. (2014), where one of the assumptions made was that the elastic and anelastic moduli are collinear. The method
proposed in this paper allows to remove this restriction, as it provides the fully relaxed, elastic properties independently, and
the same material can be characterised using both methods, with the resulting static elastic matrix and the frequency-
dependent anelastic matrices possibly having different degrees of anisotropy. The possibility of these matrices possessing
different symmetries was already reported by Dovstam (2000) and Biot (1954). Whether or not this is the case for the
elastomers that constitute the solid frame of porous foams, is an open question.

The main contribution of this paper is to propose a method for the characterisation of the anisotropic static elastic
properties of a porous material. As a proof of concept concerning the feasibility of the inverse estimation approach proposed,
numerically simulated measurements are used as targets in the inverse estimation. The current paper starts with the
material model and the characterisation method, which is then applied to four fictitious materials, one isotropic, one
transversely isotropic, one orthotropic and one anisotropic material sample, to verify the method and its applicability for
the present purpose. A study of the numerical robustness of the method is included as well.

2. Material model

Biot (1956) described the constitutive laws for porous materials, which consist of a solid phase and a fluid phase, most
frequently air in acoustic applications. In the case of open-cell porous materials, the fluid phase only takes part in the
dynamic deformation (Melon et al., 1998). Therefore, the static structural properties of the material, such as elasticity,
can conveniently be described in the absence of the fluid phase. Then, only the solid frame of the material is here considered
and the Hooke’s law for the material may be written as
rðxÞ ¼ HðxÞeðxÞ; ð1Þ
giving the relation between the frequency-dependent stresses and strains in the material in vacuum, where HðxÞ is the stiff-
ness or Hooke’s matrix. For the notation of the stresses and strains, the convention used is
r ¼ r11 r22 r33 r23 r31 r12½ �T;
e ¼ e11 e22 e33 2e23 2e31 2e12½ �T:

ð2Þ
The stiffness matrix HðxÞmay be rewritten according to the augmented Hooke’s law (Dovstam, 2000) as a superposition
of an elastic, frequency-independent part describing the fully relaxed material deformation, and an anelastic, frequency-
dependent part for the reversible visco-elastic deformation,
HðxÞ ¼ Hð0Þ þ ~HðxÞ: ð3Þ
This paper focuses on the characterisation of the static, frequency-independent part Hð0Þ of the Hooke’s matrix. A proof of
concept for estimation of the frequency-dependent part ~HðxÞ is given by Cuenca and Göransson (2012), and an application
to a melamine foam in Cuenca et al. (2014), in which the material should be placed in vacuum conditions during the
experiment to extract the influence of air. For the static part of the Hooke’s matrix discussed here, the material needs not
be in vacuum (Hörlin & Göransson, 2010), given that the deformation is slow enough. As no pressure variation is present
in the material, it may be modelled as an equivalent solid material.

The anisotropic Hooke’s matrix Hð0Þa for an orthotropic material, presented in a coordinate system that is not necessarily
aligned with the natural coordinate system is given as
Hð0Þa ¼

Hð0Þa;11 Hð0Þa;12 Hð0Þa;13 Hð0Þa;14 Hð0Þa;15 Hð0Þa;16

Hð0Þa;22 Hð0Þa;23 Hð0Þa;24 Hð0Þa;25 Hð0Þa;26

Hð0Þa;33 Hð0Þa;34 Hð0Þa;35 Hð0Þa;36

Hð0Þa;44 Hð0Þa;45 Hð0Þa;46

ðsymÞ Hð0Þa;55 Hð0Þa;56

Hð0Þa;66

2
666666666666666664

3
777777777777777775

: ð4Þ
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The Hooke’s matrix Hð0Þa consists of 21 independent terms and can be rewritten as a transformation of the orthotropic
Hooke’s matrix Hð0Þ, defined by nine entries in its natural coordinate system, by multiplication with a Bond matrix Ae

(Carcione, 2007; Slawinski, 2010), such that
Fig. 1.
are refe
points
Hð0Þa ¼ AT
e

� ��1
Hð0ÞðAeÞ�1

: ð5Þ
The matrix Ae is given in Appendix A. The entries of Ae are the elements of transformation matrix a, defined by a successive
rotation around the fixed x; y, and z axes of the natural coordinate system by angles a; b and c respectively, as
a ¼ Rðx;aÞ Rðy; bÞ Rðz; cÞ: ð6Þ
The rotation matrices Rðx;aÞ; Rðy; bÞ, Rðz; cÞmay be found in Appendix A as well. Other sets of Euler angles are possible, and
for each combination of rotations, a unique set of Euler angles exists, leading eventually to the same transformed matrix.

The stiffness matrix Hð0Þ can be rewritten in its natural coordinate system in terms of engineering constants as
Hð0Þ ¼

1
E1

� m21
E2
� m31

E3
0 0 0

� m12
E1

1
E2

� m32
E3

0 0 0

� m13
E1
� m23

E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

2
666666666664

3
777777777775

�1

; ð7Þ
where E1; E2 and E3 are the Young’s moduli in directions 1, 2 and 3 respectively, and mij is the Poisson ratio for transverse
strain in the j direction when loaded in the i direction. Gij are the shear moduli in the (i; j) planes respectively (Jones, 1999).

3. Characterisation method

The approach for characterisation of the static orthotropic Hooke’s matrix Hð0Þa of poroelastic materials uses a set of
measured displacements uEXP as targets of an inverse estimation procedure. In the latter, the experimental setup is replicated
in a finite element model, including the material model described above and providing the corresponding simulated dis-
placements uFE for a set of elastic moduli. These are varied until the difference between measured and simulated displace-
ments is minimised. Such minimisation procedure is performed numerically by means of an optimisation algorithm.

3.1. Experimental setup

The displacements uEXP ¼ fu;v ;wg are measured in an appropriate setup on a cubic material sample which is compressed
by da ¼ L0 � L1, subsequently in all three coordinate directions, where subscript 0 refers to the state of the sample prior to
compression and subscript 1 to the state thereafter. In addition to the measurement of the displacements, the force needed
to compress the material sample by da must be measured for a complete characterisation of the Hooke’s matrix.

In order to design a practical experiment, it was chosen to apply a compression to a cubic sample of porous material, and
to simultaneously measure the deformation on all four free faces of the material. The practical execution of such an exper-
iment is described by Guastavino and Göransson (2007). It is worth noting here that both the model described above and the
measurements performed with the latter method are subjected to the assumption of linear deformations.
Representation of the cubic sample (light grey) placed between two rigid plates (dark grey) with the coordinate system. The faces of each material
rred to as x�; xþ; y�; yþ; z� and zþ . The displacement is measured in a number of points on all free faces of the sample, here presented with 81

on the y� face.
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A simplified representation of the setup is given in Fig. 1 for a compression of the material in the z direction. The material
sample is placed in between two rigid plates. Note that the displacement is solely applied on the top plate and that the bottom
plate stays stationary during the experiment. Therefore the frame of reference is the same for the compressed and uncom-
pressed states and there is no rigid-body motion of the sample. The dimensions of the sample throughout this work are
100� 100� 100 mm3. For ease of reference, the different faces of the cubic sample are indicated as x�; xþ; y�; yþ; z�; zþ,
with respect to the coordinate system defined for the sample. The displacement components are defined as
u ¼ ðx0 � x1Þ;v ¼ ðy0 � y1Þ and w ¼ ðz0 � z1Þ, where fx0; y0; z0g and fx1; y1; z1g are the positions of a point in the material
before and after compression respectively.

This experimental setup may easily be modelled with finite elements. The FE Model used here and in the further compu-
tations, is implemented within a conventional finite element package. The measured specimen is represented by a cubic
sample of solid material. The boundary conditions are such that the displacement of the top of the material is equal to da

in the direction of applied displacement, or longitudinal direction, and zero in the other two transverse directions. The dis-
placements on the bottom face are all set equal to zero (fixed), and the other faces are unconstrained. The elements in the
mesh are quadratic order Lagrange polynomial hexahedral elements. For this application, 10 elements per edge length of the
sample are sufficiently accurate, which results in a total of 1000 elements. The model is solved for 27,783 DOFs.

An example of the deformation of the faces of a porous material is shown in Fig. 2 for a fictitious material with an iso-
tropic Hooke’s matrix, resulting from a compression of da ¼ 5 mm in the z direction. In this example, the Hooke’s matrix cho-
sen is for an isotropic polyurethane open-cell foam with a Young’s modulus E ¼ 70 kPa, Poisson ratio m ¼ 0:39 and hence a
shear modulus G ¼ 25:18 kPa (Hörlin & Göransson, 2000). As the material is isotropic, the same figures are found for com-
pressions in the other directions. In Fig. 2, P is a parameter varying along the perimeter of the samples, the faces being rep-
resented from 0 m to 0.4 m in the order ½y�; xþ; yþ; x�� such that the edge at P ¼ ð4� 0:1 mÞ ¼ 0:4 m is the same edge as for
P = 0 m. The second axis corresponds to the longitudinal coordinate, in this case the z axis, and the third axis presents the
deformation. The longitudinal displacement component w is given in Fig. 2(c). It is equal for all faces, and it can be seen from
the figure that the bottom of the material is indeed stationary (w = 0 mm for z = 0 m) and a compression of da ¼ 5 mm is
applied on the top (w ¼ �5 mm for z = 0.1 m). Fig. 2(a) and (b) clearly show the effect of the positive Poisson ratio. There
is no displacement component u; v at the top and the bottom of the material, but the middle of the material has shifted
outwards.

The target used in the inverse estimation, being the 3D displacement vector uEXP ¼ fu;v ;wg at a number of N equidistant
points, is extracted from each face of the material for each direction of compression. As the compression is applied parallel to
all three coordinate axes this leads to a total of 12N data points per material containing information about the displacement
in directions x; y and z. In Fig. 1, an example is given of how the points may be distributed along one of the faces, with N = 81.

3.2. Optimisation space

The number of parameters to estimate in the inverse estimation may be reduced to eight due to the choice for the mate-
rial deformation as target in the inverse estimation. One unique deformation pattern resulting from a static compression can
be found for different stiffness matrices. Thus, for the inverse problem, multiple solutions for the Hooke’s matrix are possible.
However, only one unique normalised Hooke’s tensor exists. This may be seen by considering the work per unit volume of
the material. For two materials A and B of equal dimensions under compression, the work per unit volume is equal to
WA ¼ 1=2eT

AHAeA ¼ FA � uA and WB ¼ 1=2eT
BHBeB ¼ FB � uB, where HAðBÞ represents the stiffness matrix (Jones, 1999), eAðBÞ

the strain vector, uAðBÞ the deformations and FAðBÞ the force needed to obtain deformation uAðBÞ for material A and material
B respectively. If the displacements of all points in materials A and B are equal (uA ¼ uB) due to (not necessarily equal) forces
FA and FB respectively, then the strain in these materials will also be equal (eA ¼ eB), and consequently
WA=WB ¼ HA=HB ¼ FA=FB. Thus a constant CH ¼ FA=FB exists so that HA ¼ CHHB, and this constant can be found by measuring
the force needed to obtain a certain deformation da.

The goal of the inverse estimation is thus to characterise the normalised Hooke’s tensor, equal to the actual Hooke’s

tensor but for a constant factor CH. If this constant factor is chosen such, that Hð0Þ11 ¼ 1, the Hooke’s matrix can be written

as a multiplication of an initial guess matrix Ĥij and a matrix of scaling constants Hs
ij, such that Hð0Þij =CH ¼ Ĥij � Hs

ij with
Ĥ ¼

1 Ĥ12 Ĥ13 0 0 0

Ĥ22 Ĥ23 0 0 0

Ĥ33 0 0 0

Ĥ44 0 0

ðsymÞ Ĥ55 0

Ĥ66

2
666666666666664

3
777777777777775

ð8Þ
and
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Fig. 2. Deformation of fictitious isotropic porous material under static compression in z. Note that the figure (c) is rotated for clarity of the figure.
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Hs ¼

1 n3 n4 0 0 0
n1 n5 0 0 0

n2 0 0 0
n6 0 0

ðsymÞ n7 0
n8

2
666666664

3
777777775
: ð9Þ
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The angles a; b and c are expressed as a multiplication of initial guesses with scaling constants,
a ¼ â � n9;

b ¼ b̂ � n10;

c ¼ ĉ � n11:

ð10Þ
The full optimisation space ni thus contains 11 parameters,
ni ¼ n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11½ �T: ð11Þ
Certain restrictions are imposed on the Hooke’s matrix Hð0Þ by the thermodynamic principle requiring that no energy can be
created. This translates into a condition on the Hooke’s matrix which must be positive definite and this is satisfied with the
following constraints (Jones, 1999):
Hð0Þii > 0; i ¼ 1; . . . ;6; ð12Þ
grðH

ð0ÞÞ � 1 ¼ 0; r ¼ 1; . . . ;4; ð13Þ
where
g1 ¼
Hð0Þ23

� �2

Hð0Þ22 H33

; g2 ¼
Hð0Þ13

� �2

Hð0Þ11 Hð0Þ33

; g3 ¼
Hð0Þ12

� �2

Hð0Þ11 Hð0Þ22

;

g4 ¼ g1 þ g2 þ g3 � 2
Hð0Þ12 Hð0Þ23 Hð0Þ31

Hð0Þ11 Hð0Þ22 Hð0Þ33

:

ð14Þ
In addition, the following constraints apply to the angles a, b and c,
�p=2 < a; b; c < p=2: ð15Þ
3.3. Inverse estimation

In the inverse estimation procedure, a material model is varied to approximate the measured displacements. In each iter-
ation of the optimisation routine, a finite element model representing the experimental setup is solved for a proposed set of
constitutive parameters, Eq. (11). An important assumption made here is that the frame of the porous material is assumed to
behave as an equivalent solid as the influence of pressure variations in the air can be neglected under a slow loading (Hörlin
& Göransson, 2010). For one full calculation of the displacements, three FEM solutions are computed for x; y and z directions.
From these, the displacements uFEðniÞ ¼ fu;v ;wg are extracted at the same points as in the experiment. The difference
between measured and simulated displacements is the basis for the objective function, defined as the square of the absolute
difference between the predicted displacements and the measured displacements, summed over all faces f in each compres-
sion direction c for all points per face N,
f ðniÞ ¼ 1þ A
X3

c¼1

X4

f¼1

XN

k¼1

c
f uFE

k ðniÞ � c
f uEXP

k

��� ���2: ð16Þ
In the calculation of the objective function, a term 1 and a multiplication factor A are added for numerical stability. As the
displacement applied is in mm, the factor A is chosen to be a scaling parameter equal to 103. Another possibility is to choose
A ¼ j1=daj, as the inverse of the applied displacement.

At this point it is important to note that a particular strength of the method lies in the fact that the inverse estimation
procedure is performed by comparing experimental and simulated displacements, which avoids errors often encountered
in the estimation of strains from experimental displacements (Průša, Rajagopal, & Saravanan, 2013).

The optimisation routine is implemented in Matlab using the globally convergent method of moving asymptotes
(GCMMA) by Svanberg (2002). The GCMMA routine pursues a strict decrease of the object function, guaranteeing a set of
parameters which is a preferable solution. A detailed description of the GCMMA algorithm is given in the original paper
by Svanberg (2002). The criteria to assess whether the optimisation is converged are that a variation in the objective function
and in each of the parameters must be less than 10�4 between two subsequent iterations.

To get an understanding of how the differences between simulated and measured displacements are spread, a symbolic
representation of the measure of this difference is given for each compression direction c,
lc
m ¼

1
N

X4

f¼1

XN

k¼1

f uFE
k ðniÞ � f uEXP

k

da

����
����; ð17Þ
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which can be written as a matrix,
lm ¼
lu;x lv;x lw;x

lu;y lv;y lw;y

lu;z lv;z lw;z

2
64

3
75: ð18Þ
The component lu;x for example gives the average difference on the displacement components u for compression in the x
direction over all four faces, relative to the applied displacement da. Note that the subscript m has been introduced in order
to identify the results for the different samples tested and discussed in later sections.

4. Validation of the inverse estimation approach

The method proposed here for characterisation of the static Hooke’s tensor of orthotropic porous materials is verified for
four artificial materials with a priori known elastic properties. The method will subsequently be applied to an isotropic foam,
a transversely isotropic and an orthotropic material, and a rotated generally orthotropic foam. A numerical experiment is
conducted to this end for a compression da ¼ 5 mm, in order to evaluate the ability of the approach to estimate the Hooke’s
matrix to an acceptable degree of accuracy for different material symmetries and for different ranges of the values in the
Hooke’s matrix. For each material, the displacements are numerically generated, and then used as targets in the inverse esti-
mation. Recall that the numerically generated displacements will be referred to as the measured displacements. To verify the
generality of the approach, the known material symmetry is not taken into account in the inverse estimation, and each mate-
rial is addressed as if it were orthotropic.

The starting point for the optimisation can be chosen arbitrarily, and the final solution does not depend on the chosen
starting point. This was verified by repeating the inverse estimation for different starting points, converging each time
towards the same optimum. The results shown are for an initial guess with the non-zero elements of Ĥij ¼ 1, see Eq. (8),
and the initial choice for the scaling constants
ni ¼ 1 1 0:4286 0:4286 0:4286 0:2857 0:2857 0:2857½ �T; ð19Þ
representing an isotropic Hooke’s matrix with arbitrary Young’s modulus and a Poisson ratio of m ¼ 0:30. An isotropic start-
ing point was selected, since there is sometimes data available on the isotropic elastic moduli of the porous material in the
literature.

In order to test another aspect of the generality of the approach the bounds for the parameters are chosen very large,
imposing no restrictive assumption on the values of the parameters. The allowed minimum and maximum values in the
optimisation are given in Eq. (20). The lower limit is set to a value CL ¼ 0:0005, different from zero for numerical stability
reasons,
ni;min ¼ CL CL �50 �50 �50 CL CL C L½ �T;
ni;max ¼ 100 100 50 50 50 100 100 100½ �T:

ð20Þ
The error measure used in order to validate the proposed method is given by
� ¼
xopt � x0

�� ��
x0

; ð21Þ
where x0 are the values of the parameters for the target material (here used for the fictitious measurements), and xopt are the
values of the parameters which give the best fit of the model, resulting from the inverse estimation.

4.1. Properties of artificial materials studied

Four artificial materials are studied in order to verify the applicability of the method. In order to show the feasibility of the
approach, its limits are investigated. Therefore the fictitious materials used in the verification are rather extreme cases. A
material with a large ratio between in-plane and out-of-plane in the transversely isotropic case is selected to this end. In
the orthotropic case as well, a Hooke’s tensor was chosen which would be challenging for the inverse characterisation
method.

The properties of the fictitious isotropic material are obtained from Hörlin and Göransson (2000), and were presented
earlier. The fictitious transversely isotropic tensor is fully defined by five parameters. The data for the elastic and shear mod-
uli are taken from a previously reported fibrous material (Rice & Göransson, 1999). The out of plane moduli are Ex and Gyz,
and the in-plane moduli are Ey;z and Gzx;xy. The Poisson ratio mzy is obtained from the relation 1=Gyz ¼ 2ð1þ mzyÞ=Ey. The Pois-
son ratio myx ¼ mzx was chosen within certain limits such that the Hooke’s matrix would be positive definite. The third case
investigated is an orthotropic material. Little literature is available on the elastic properties of orthotropic porous materials.
The composed artificial Hooke’s matrix has a large ratio between smallest and largest moduli, one Poisson ratio (mzy) is close
to zero, and one Poisson ratio (mxz) close to the possible limit for positive definiteness. The last case also includes a transfor-
mation of the Hooke’s matrix Hð0Þ to give the Hooke’s matrix Hð0Þa , see Eq. (5). The rotations are arbitrarily chosen as p=10
radians around the x axis, �p=6 radians around the y axis and p=36 radians around the z axis.
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A complete overview of the properties, in terms of engineering constants, of the four fictitious materials used for the
verification of the method are presented in Table 1.

4.2. Isotropic material

The first verification case is performed for the isotropic material. The material data may be found in Table 1. The
deformations for this artificial material are given in Fig. 2 for a compression da ¼ 5 mm in the z direction.

The actual Hooke’s matrix, and the engineering constants can be calculated from the non-dimensional variables in the
optimal solution. The average force (over all three directions) F̂EXP needed to compress the fictitious material in the numer-
ical experiment by da ¼ 5 mm equals �38.77 N. The average force F̂FE needed for a compression of a material with Hooke’s
tensor Hð0Þij =CH equals �0.277 �10�3N. The actual Hooke’s tensor is then obtained by multiplying the dimensionless Hooke’s
matrix with the constant CH ¼ F̂EXP=F̂FE ¼ 139:891 � 103. The target and estimated engineering constants are given in Table 2
together with their relative difference.

The iteration history of the objective function is shown in Fig. 3 (omitting the added constant) and the corresponding
convergence of the different scaling constants is shown in Fig. 4.

The relative average difference in the displacements for the optimal solution, i.e. the components corresponding to
Eq. (18), is
Table 1
Enginee

Eng.

Ex [k
Ey [k
Ez [k
myx [
mxz [
mzy [
Gyz [
Gzx [
Gxy [
a[–]
b [–]
c [–]
liso ¼
0:0054 0:0241 0:0241
0:0360 0:0088 0:0186
0:0360 0:0186 0:0088

2
64

3
75ð%Þ: ð22Þ
4.3. Transversely isotropic material

The second verification case is the fictitious transversely isotropic material, of which the properties can be found in Table 1.
The deformations resulting from a compression of da ¼ 5 mm are shown in Fig. 5 for three displacement–compression cases.
Fig. 5(a) shows the displacement component v resulting from a compression in x, Fig. 5(b) and (c) show the displacement
component u and w respectively for a compression in y. The effect of transverse isotropy in the longitudinal direction, e.g.
displacement component w in direction z, is not shown here as it is perceived to a lesser extent, since the deformation of the
top of the material must be equal to da and the deformation of the bottom must be zero.

In Fig. 5(a), which shows compression along the x axis, P is once again a parameter varying along the perimeter of the
samples, the faces being shown from 0 m to 0.4 m in the order [z�; yþ; zþ; y�] so that the edge at P = 0.4 m is the same edge
as P = 0 m. The second axis is the longitudinal coordinate, in this case the x axis and the third axis presents the deformation.
For Fig. 5(b) and (c), the axis of compression is the y axis, and the faces are shown in the order ½x�; zþ; xþ; z��.

The effect of the Poisson ratio can be clearly seen in Fig. 5. In Fig. 5(a), the Poisson ratio mxy ¼ mxz results in a low but out-
ward and thus positive (negative) displacement component v for face yþðy�Þ. The displacement component w for a compres-
sion in x gives the same result. Fig. 5(b) shows a large outward displacement component v or w due to the Poisson ratio
myx ¼ mzx. The displacement profile as a result of a negative Poisson ratio is seen in Fig. 5(c), giving a negative (positive)
displacement component w for face zþðz�Þ, oriented inwards.

The Hooke’s matrix for the optimal solution is calculated from the average force needed to compress the foam by da in all
three directions, as was more elaborately shown for the isotropic case. Table 3 gives the engineering constants for the
optimal solution and the relative difference between these and the target engineering constants.

The iteration history of the objective function is shown in Fig. 6 (omitting the added constant), and the corresponding
convergence of the different scaling constants is shown in Fig. 7.
ring constants for artificial materials.

const. Isotropic Transverse isotropic Orthotropic Anisotropic

Pa] 70 0.225 300 300
Pa] 70 17.2 217 217
Pa] 70 17.2 78 78
-] 0.39 4 0.5 0.5
–] 0.39 0.0523 �1.55 �1.55
–] 0.39 �0.3723 0.1 0.1
kPa] 25.18 13.7 140 140
kPa] 25.18 1.2 60 60
kPa] 25.18 1.2 440 440

0 0 0 p=10
0 0 0 �p=6
0 0 0 p=36



Table 2
Comparison of the engineering constants for the target and optimal solution for fictitious isotropic material.

x x0 xopt xopt � x0
�� ��

x0
(%)

Ex [Pa] 70,000 70,308 0.44
Ey [Pa] 70,000 69,924 0.11
Ez [Pa] 70,000 69,924 0.11
myx [–] 0.39 0.389 0.06
mxz [–] 0.39 0.391 0.22
mzy [–] 0.39 0.390 0.03
Gyz [Pa] 25180 24,994 0.74
Gzx [Pa] 25180 24,937 0.97
Gxy [Pa] 25180 24,937 0.97
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Fig. 3. Iteration history of objective function for fictitious isotropic material.
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Fig. 4. Iteration history of scaling constants ni for fictitious isotropic material, dashed line being the target.
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The relative average difference in the displacement for the optimal solution, i.e. the components corresponding to Eq.
(18), is
ltrans ¼
0:0011 0:0038 0:0040
0:0057 0:0062 0:0063
0:0060 0:0061 0:0063

2
64

3
75ð%Þ: ð23Þ
4.4. Orthotropic material

The engineering constants of the chosen Hooke’s tensor are given in Table 1. The effect of the Poisson ratio, which has
been shown previously for the isotropic and transversely isotropic materials, is clear from Figs. 2 and 5. A figure representing
the displacements of this material under compression is therefore not given, as it would not add any further information. On
the other hand, the effect of the shear moduli on the displacement due to a compression is shown here. For a material with a
Hooke’s tensor with engineering constants used here, the maximum displacement component vmax due to a compression in x
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Fig. 5. Deformation of transversely isotropic porous material under static compression da.

Table 3
Comparison of the engineering constants for the target and optimal solution for fictitious transversly
isotropic material.

x x0 xopt xopt � x0
�� ��

x0
(%)

Ex [Pa] 225 225.4 0.17
Ey [Pa] 17,200 17,183 0.10
Ez [Pa] 17,200 17,181 0.11
myx [–] 4 4.00 0.06
mxz [–] 0.0523 0.0524 0.22
mzy [–] �0.3723 �0.3722 0.03
Gyz [Pa] 13,700 13,557 1.05
Gzx [Pa] 1200 1202.0 0.17
Gxy [Pa] 1200 1202.1 0.17

C. Van der Kelen et al. / International Journal of Engineering Science 86 (2015) 44–59 53
is equal to 2.4 lm while for a material with an identical Hooke’s matrix, except for Gxy ¼ 140 kPa, the maximum displace-
ment component vmax equals 1.9 lm. This coupling between compression and shear is important and allows to identify the
shear moduli in the proposed approach.

The Hooke’s matrix for the optimal solution is calculated from the average of the force needed to compress the foam by da

in all three directions, as done for the isotropic case. Table 4 gives the engineering constants for the optimal solution and the
relative difference between these and the target engineering constants.

The iteration history of the objective function is shown in Fig. 8 (omitting the added constant), and the corresponding
convergence of the different scaling constants is shown in Fig. 9.

The relative average difference in the displacement for the optimal solution, i.e. the components corresponding to
Eq. (18), is
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Table 4
Compar

x

Ex [P
Ey [P
Ez [P
myx [
mxz [
mzy [
Gyz [
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lortho ¼
0:048 0:046 0:043
0:061 0:034 0:086
0:22 0:035 0:049
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4.5. Generally orthotropic material

The last case studied is the generally orthotropic material, with 21 components in the Hooke’s matrix. In order to find a
converged solution, different strategies for the inverse estimation have been evaluated. The computationally most effective
approach was found to consist of two phases. In the first phase, an inverse estimation is executed with parameters n1 to n8,
with the angles equal to zero during this phase. When the stop criteria are fulfilled for the first phase, with parameters n1

1�8 as
outcome, a new inverse estimation is initialised with all parameters active, and as a starting point for parameters n1 to n8 the
results n1

1�8 of the previous phase.
Table 5 shows the target and estimated engineering constants, together with their relative difference.
ison of the engineering constants for the optimal solution for fictitious orthotropic material.

x0 xopt xopt � x0
�� ��

x0
(%)

a] 300,000 297,158 0.95
a] 217,000 215,657 0.62
a] 78,000 78,825 1.06
–] 0.5 0.50 0.15
–] �1.55 �1.54 0.62
–] 0.1 0.10 0.37
Pa] 140,000 143,387 2.42
Pa] 60,000 59,751 0.41
Pa] 440,000 433,510 1.48
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Fig. 8. Iteration history of objective function for fictitious orthotropic material.
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Fig. 9. Iteration history of scaling constants ni for fictitious orthotropic material, dashed line being the target.

Table 5
Comparison of the engineering constants for the optimal solution for fictitious generally orthotropic material.

x x0 xopt jxopt � x0j
x0

(%)

E1 [Pa] 300,000 302,409 0.80
E2 [Pa] 217,000 217,697 0.32
E3 [Pa] 78,000 77,084 1.17
m21 [-] 0.5 0.50 0.30
m13 [-] -1.55 �1.55 0.11
m32 [-] 0.1 0.099 1.30
G23 [Pa] 140,000 139,560 0.31
G31 [Pa] 60,000 59531 0.78
G12 [Pa] 440,000 443,276 0.75
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Fig. 10. Iteration history of objective function for fictitious generally orthotropic material.
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Fig. 11. Iteration history of scaling constants ni for fictitious generally orthotropic material, dotted line being the target. The vertical line marks the end of
phase 1 and the beginning of phase 2. Parameters n9�11 are activated in phase 2 only.
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The iteration history of the objective function is shown in Fig. 10 (omitting the added constant). The vertical line indicates
the point in the simulation where the optimisation has converged for phase 1 and is initialised for the succeeding phase. The
corresponding convergence of the scaling constants is shown in Fig. 11. In the first phase, the angles are not activated in the
inverse estimation and hence are equal to zero.

The relative average difference in the displacement for the optimal solution, i.e. the components corresponding to Eq.
(18), is given (in percent) in Eq. (25),
lan ¼
0:083 0:040 0:071
0:043 0:057 0:070
0:063 0:019 0:071
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5. Discussion

The proposed characterisation method is verified for four fictitious materials with different degrees of anisotropy. The
artificial stiffness matrices are retrieved with a good accuracy. For all cases, the objective function decreases monotonically,
as is expected for the optimisation algorithm used.

For the isotropic material, the difference between the target and optimal values of the engineering constants is small. The
inverse estimation converges in a relatively small number of iterations, since the starting point is an isotropic matrix. Note
that, although the material is isotropic, the optimal Hooke’s tensor deviates slightly from isotropy, as a result of imposing
that Hð0Þ11 ¼ 1. Since Hð0Þ22 and Hð0Þ33 are not converged to exactly 1, perfect isotropy is not reached. If the inverse estimation
would have been allowed to continue for more iterations, full convergence and perfect isotropy would be reached. On the
other hand, a real material most probably will never assume a perfect isotropic symmetry. The differences between targeted
and optimal parameters are largest for the parameters related to the shear moduli, since they have the smallest influence on
the displacements resulting from a compression. The relative average difference in displacement between experiment and
simulation, Eq. (22), is smaller than 0.05%, and is smallest for the longitudinal displacement components, i.e. lu;x; lv;y; lw;z.

The convergence of the transversely isotropic fictitious material takes considerably more iterations. This is due to the
rather extreme transverse isotropy of the chosen material. The scaling constants are very large as the ratio between in-plane
and out-of-plane elastic moduli is very high. Nevertheless, the target properties are obtained with very good accuracy. For
this case, the relative average difference in displacement, Eq. (23), is very small for all components. This case shows that a
very large ratio between the different engineering constants should not cause a problem for the characterisation method.

The orthotropic case converged with good accuracy as well. The convergence for the scaling constants is not as smooth as
for the other fictitious materials. The scaling constant n6 only converges when all other parameters have converged. This is
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possibly due to the low Poisson ratio mzy chosen in this case, which results in a limited coupling between the shear moduli
and the elastic moduli. In the optimiser, the objective function is not very sensitive to changes in this shear modulus. This
might point to a potential problem of the approach when studying materials with very small Poisson ratios. The relative
average difference in displacement is less than 0.1%, except for the component lu;z.

The result for the generally orthotropic case shows that the method retrieves the angles and the engineering constants
with very good accuracy. The relative differences in the displacement between the optimal and the target solution, given
by Eq. (24), are all very small as well. This numerical example confirms that the computational part of the inverse estimation
works accurately, for data free from various flaws, such as noise or uncertainty due to geometry, mounting and
inhomogeneity.

The verification performed intends to show the generality with which the method may be applied. Therefore the starting
point and the bounds for the parameters have been chosen in such a way that no restrictive assumptions on the values of the
parameters were imposed. If these were to be chosen with a certain a priori knowledge and if the number of iterations would
be increased, the optimal values in the inverse estimation would be even closer to the target values. However, the result in
this paper is satisfactory and shows that the approach gives good results for estimating the static Hooke’s matrix of
orthotropic materials.

6. Robustness of the method

To conclude the study of the computational part of the characterisation method, the robustness of the method was
studied for the rotated orthotropic material verified in the previous section. Two aspects of the robustness are studied. First,
an uncertainty is added to the experiment, i.e. the input displacement in one of the directions is increased by 10%. A second
study shows the effect of uncertainties in the sample dimensions on the inverse estimation results.

6.1. Sensitivity to uncertainty on input displacement

The compression da is changed in the z direction from 5 to 5.5 mm in the numerical experiment. In the inverse estimation,
it is assumed that the displacement in all directions is 5 mm. Table 6 gives the target values for the engineering parameters,
the optimal values found for the case with uncertainty, and the relative difference between both.

The relative average difference between the displacement for the optimal solution and the target without uncertainties,
i.e. the components corresponding to Eq. (18), is given (in percent) in Eq. (26),
Table 6
Compar

x

E1 [P
E2 [P
E3 [P
m21 [
m13 [
m32 [
G23 [
G31 [
G12 [
a (ra
b (ra
c (ra
lda
¼

0:24 0:27 0:27
0:19 0:17 0:13
0:38 0:24 0:62
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These results show that an uncertainty of 10% on the compression, results in a smaller difference in the engineering con-
stants. Of course, some parameters are affected more than others, but the final difference for all is still less than the uncer-
tainty of 10% introduced in the input. From Eq. (26), it may be possible to see where the error has occurred. The relative
average difference for the compression in z direction is larger than in the other directions.

6.2. Sensitivity to uncertainties on sample dimensions

The sample size is adjusted from 100� 100� 100 mm3 to 95� 95� 95 mm3 in the numerical experiment. This corre-
sponds to a change in volume of approximately 12%. In the inverse estimation it is assumed that the sample size is
100� 100� 100 mm3. Table 7 gives the target values for the engineering parameters, the optimal values found for the case
with uncertainty, and the relative difference between both.
ison of the engineering constants and angles for the optimal solution with uncertainty on input displacement.

x0 xopt xopt � x0
�� ��

x0
(%)

a] 300,000 296,044 1.32
a] 217,000 229,733 5.87
a] 78,000 77,560 0.56
–] 0.5 0.52 3.77
–] �1.55 �1.56 0.91
–] 0.1 0.10 3.96
Pa] 140,000 151,897 8.50
Pa] 60,000 63,047 5.08
Pa] 440,000 455,463 3.51
d) 0.3142 0.3183 1.33
d) �0.5236 �0.5254 0.33
d) 0.0873 0.093 6.61



Table 7
Comparison of the engineering constants and angles for the optimal solution, with uncertainties on sample dimensions.

x x0 xopt xopt � x0
�� ��

x0
(%)

E1 [Pa] 300,000 277,405 7.53
E2 [Pa] 217,000 200,294 7.70
E3 [Pa] 78,000 74,724 4.2
m21 [–] 0.5 0.51 1.95
m13 [–] �1.55 �1.57 1.59
m32 [–] 0.1 0.11 10.48
G23 [Pa] 140,000 142,167 1.55
G31 [Pa] 60,000 58,265 2.89
G12 [Pa] 440,000 438,610 0.32
a (rad) 0.3142 0.3112 0.94
b (rad) �0.5236 �0.5319 1.59
c (rad) 0.0873 0.090 2.66
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The relative average difference between the displacement for the optimal solution and the target without uncertainty, i.e.
the components corresponding to Eq. (18), is given (in percent) in Eq. (27),
ldim ¼

0:57 0:20 0:33

0:32 0:49 0:24

0:24 0:11 0:32

2
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3
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The difference in the engineering constants is again smaller than the uncertainty on the sample dimensions. The Young’s
moduli are most sensitive to the uncertainties introduced, and are consistently smaller than the original values, as expected.
The effect on the angles is small. From Eq. (27), it can be seen that the sensitivity is largest in the direction of compression, i.e.
the diagonal elements of this matrix.
7. Conclusion

This paper investigates the feasibility of an approach for the characterisation of the static Hooke’s tensor of a porous
material. The data used as input to the inverse estimation are measurements of the displacements on the faces of the mate-
rial when compressed along the three coordinate axes. The proposed approach establishes a normalised Hooke’s matrix for a
cubic sample of porous material, and the actual values may be found by measuring the force applied on the material. An
objective function is proposed, based on the relative difference between measured and simulated displacements uEXP and
uFE in the three directions of compression.

As a validation of the approach, the method is applied to four artificial porous materials with different degrees of anisot-
ropy and different values for the engineering constants. The implications of anisotropy on the displacements are discussed
and illustrated. The a priori known Hooke’s matrix is retrieved with good accuracy for each test case, which shows that the
approach is valid and may be applied to real materials to obtain the static Hooke’s tensor of a porous material. The
investigation in this paper also shows that caution is needed when studying materials of which the Poisson ratio is close
to zero, due to the low shear coupling. The proposed numerical approach is also studied for its robustness, where it is seen
that the effect of perturbations on the input data is smaller than the perturbation itself.

Experimental considerations have not been included in the present paper. A forthcoming paper will be devoted to the
application of the method to a real industrial porous material.
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Appendix A. Transformation for Hooke’s matrix

The Bond matrix for transformation of the Hooke’s matrix in Eq. (5) is given by Slawinski (2010) and Carcione (2007)
Ae ¼
A11 A12

A21 A22

" #
; ðA:1Þ
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where
A11 ¼
a2

11 a2
12 a2

13

a2
21 a2

22 a2
23

a2
31 a2

32 a2
33

2
64

3
75;

A12 ¼
a12a13 a11a13 a11a12

a22a23 a21a23 a21a22

a32a33 a31a33 a31a32

2
64

3
75;

A21 ¼
2a21a31 2a22a32 2a23a33

2a11a31 2a12a32 2a13a33

2a11a21 2a12a22 2a13a23

2
64

3
75;

A22 ¼
a22a33 þ a23a32 a21a33 þ a23a31 a21a32 þ a22a31

a12a33 þ a13a32 a11a33 þ a13a31 a11a32 þ a12a31

a12a23 þ a13a22 a11a23 þ a13a21 a11a22 þ a12a21

2
64

3
75:

ðA:2Þ
The entries aij are the elements of transformation matrix Ae, defined by a successive rotation around the fixed x; y, and z
axes of the natural coordinate system by angles a; b and c respectively,
a ¼ Rðx;aÞ Rðy;bÞ Rðz; cÞ ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75; ðA:3Þ
with
Rðx;aÞ ¼
1 0 0
0 cos a sin a
0 � sin a cos a

2
64

3
75; Rðy;bÞ ¼

cos b 0 � sin b

0 1 0
sin b 0 cos b

2
64

3
75; ðA:4Þ

Rðz; cÞ ¼
cos c sin c 0
� sin c cos c 0

0 0 1

2
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3
75: ðA:5Þ
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